New Sulfur Containing Polymers, 2*

Oskar Nuyken and Manfred Hofinger

Lehrstuhl für Makromolekulare Stoffe der TU München, Lichtenbergstraße 4, 8046 Garching, Federal Republic of Germany

Dedicated to Professor Georg Manecke on his 65th birthday

Summary

It was shown that 3 -vinylbenzenethiol (1) and 4 -vinylbenzenethiol (2) polymerize, slowly, in the dark. However, the polymerizations can be accelerated by U.V. light. The progress of the polymerization were followed by ¹H NMR spectroscopy.

1.) Introduction Polysulfides of the general structure

 $[(c_{H_2})_x - s]_n$ $[4x - s]_n$ $[4x - s - (c_{H_2})_x - s]_n$

have been synthesized either by step growth or ring opening polymerizations (R.H.GOBRAN, 1969; H.A. SMITH, 1969; R.N.Johnson 1969; F.O.DAVIS et al. 1962). An alternative route to such polymers is via the reaction of di-thiols with di-olefins (J.v. BRAUN et al. 1926; A.L.AYERS et al. 1956; A.A. OSWALD, 1970; W.COOPER et al. 1969; D.A.MACKILLOP, 1969)

 $HS-R¹-SH$ + $CH₂=CH-R²-CH=CH₂$

I "~ \$-RI-s-r162 ~n

New types of polysulfides (NUYKEN et al. 1980), with highly ordered structures can be expected from monomers such as 1 and 2 which contain both functional groups in the same molecule:

* part 1: reference 5

This paper describes the syntheses of the monomers 1 and 2 and their polymerisations under U.V.-light and in the dark without any additional initiator.

2.1. ¹H NMR measurements

The 1_H NMR spectra of 1 and 2 show the typical signals of $CH_2=CH-$, $-SH$ and aromatic protons. During the polymerization of $\frac{1}{2}$ (2) the $CH₂=CH-$ and SH- peaks decrease while the concentration of $-CH_2-CH_2-S$ -unites increases. The disappearence of the peaks due to the SHand $-CH=CH_{2}-groups$ and the increasing intensity of the CH_2 -CH₂-S- signals with time could be conveniently followed IH-NMR-spectroscopically (Fig. 1).

Fig. I: Sequential 1_H NMR spectra of 4 -Vinylbenzenethiol (2) at different times $(t_0, t_1,$ t_{2} , t_{3})

The monomer conversion U was calculated using the following equations:

$$
U[*]
$$
\n
$$
= \frac{(\int_{CH_2-CH_2-S^-})_t}{(\int_{CH_2-CH_2-S^-})_t^{2.}(\int_{CH_2=C})_t}
$$
\n
$$
U[*]
$$
\n
$$
= \frac{(\int_{CH_2-CH_2-S^-})_t^{2.}(\int_{CH_2-C})_t}{(\int_{CH_2-CH_2-S^-})_t^{2.}(\int_{SH})_t}
$$
\n
$$
U(2)
$$
\n
$$
U[*)
$$
\n<

The conversion, determined from equations (1) and (2), is independent of the (unknown) volume contraction of these polymerization processes because only integrals taken at the same time are compared.

2.2. Polymerization under U.V. light

Solutions of 1 and 2 in NMR-tubes, were exposed to light from a high pressure mercury lamp. The exposure time was varied between one and ten minutes and the 1_H NMR spectra were taken immediately after the irradiation was stopped. The polymerization of both 1 and 2 follow first-order kinetics. (Fig. 2, 3) However, before we can offer a detailed kinetic scheme further investigations (effect of light density, distance between U.V.

2.3. Polymerization in the dark

1 and 2 were polymerized at 22° C and 50° C excluding any light and initiator (Fig. 2, 3). It seems that the system contains enough thermochemical energy at room temperature to spontaneously produce active species in the dark. The decrease in intensity of the peaks due to $[CH_2=CH-]$ and $[-SH]$ are both proportional to the degree of conversion. However, for 2 although the decreasing intensity of the $CH_2=CH-$ peaks appears to be proportional to the conversion the intensity of the -SH peak is not only a function of the conversion. After 60 % conversion a ratio $[CH_2=CH-]$:

 $[-SH] = 1: 2$ was observed (compare part 3). The first-order plots of the polymerizations (Fig.2,3) are straight lines up to $50 - 70$ % conversion. At higher conversion these systems became heterogeneous and therefore deviations from linearity are not unexpected.

3. Structure of the polymers $3.1.$ 1_H NMR *~e!Yzi~b!ez!zaz~henz!e~hx!ese)*

Following structure

is strongly supported by

- a) synchronous decrease of $CH_2=CH-$ and $-SH$ of 1 during the polymerization
- b) the pattern of the 1_H NMR-spectra
- c) the $13c$ NMR (compare part 3.2.)

Poly-(thio-1,4-phenylenethylene)

After 60 % conversion the ratio $[CH_2=CH-] : [-SH]= 1 : 2$ was observed suggesting that chain growth also accurs via simple carbon-carbon-bond formation:

3.2. 13_C NMR

Poly-(sulfonyl-1,3-phenylenethylene)

This polymer was synthesized by oxidation of poly-(thio-1,3-phenylethylene)(NUYKEN et al. 1980). The ¹³C NMR spectrum of poly-(sulfonyl-1,3-phenylethylene), dissolved in nitromethane, shows signals at 135,65 - 121,94 ppm (aromatic C), at 51,91 ppm $(\text{Ar}-\text{CH}_2-)$ and at 23,96 ppm $(S-CH_2-)$.

An anti-Markovnikov structure was concluded from the 1_H - off-resonance 13_C spectrum (triplet pattern).

Poly-(thio-1,4-phenylethylene)

The polymer, dissolved in CDCl₂, exhibits signals at 138,O - 128,9 ppm (aromatic C) and only one signal in the aliphatic region at 35,0 ppm. Obviously the two signals are superimposed, since the signal becomes a triplet in the ${}^{1}H$ off-resonance ${}^{13}C$ spectrum.

4. Experimental Part

The synthesis of 3-(1-hydroxyethyl)-benezenethiol and 3-vinylbenzenethiol have already been described (O. NUYKEN et ai.1980).

4-(1-hydroxyehtyl-benzenethiol)

A method similar to that described by Overberger (C.G.OVERBERGER et al. 1956) was used. 4-aminoacetophenone was diazotized and than converted into the ethyl p-acetylphenyl-xanthate (M.C.BOURGEOIS, 1899). The reduction with sodium borohydride was carried out directly on the crude xanthate, yielding the alcohol.

Yield: 40 $\text{\$}$; b.p.: 88 $^{\circ}$ C/0.2 Torr

```
<sup>1</sup>H NMR (CDC1<sub>3</sub>) \delta (ppm): 1.35 (d,-CH<sub>3</sub>); 3.50 (s,-SH);
                     3.75 (s,-OH); 4.65 (q,-CH);
                     7,20 (s, -C_6H_4-);IR (CHCl<sub>3</sub>) \sqrt{(cm^{-1})} : 3590 ssh (O-H); 3420m (O-H);
                 3060 m (aromat. C-H); 2960 ssh 
                 aliphat. C-H); 2400 msh (S-H);
                 1100 ssh (C-O); 815 sh (1.4-C<sub>6</sub>H<sub>4</sub>-);
```
4=y!nylbenzenethiol

The 4-(1-hydroxyethylbenzenethiol) was distilled (G.MANECKE et al. 1964; R.KERBER et al. 1978) over $A1_{2}O_{2}$ 300^oC (a method which is described for dehydrating)and purified by fractional distillation. Yield: 60 %, b.p.: 40° C/0.4 Torr

```
<sup>1</sup>H NMR (CDC1<sub>3</sub>) \delta (ppm): 3.45 (s,-SH); 5.20 (d,=CH<sub>2</sub>);
                      5,67 (d,= CH_2); 6.65 (dd,-=CH-);
                      7,20 (m, -C_6H_4-);
```
Sample preparation and 1_H NMR kinetics A described operation, including the $\frac{1}{1}$ H NMR measurements were performed in completely dark rooms. A sodium vapour lamp (λ = 568 nm) was used as the indoor light in the laboratory where the experiments were carried out (Sanat-lamp, Durst/Bozen-Italy).

After fractionated destillation of 1 and 2 CDCl₂ was added (1:1), than the solution was degassed and transferred directly into the NMR tube using the apparatus shown in Fig. 4.

